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LANL Statistical Sciences Group

Mission: Bring statistical reasoning and 
rigor to multi-disciplinary scientific 
investigations through development, 
application, and communication of cutting-
edge statistical sciences research.

Statistical Sciences Focus Areas
• Reliability
• Information Integration Technology (IIT)
• Computer Model Evaluation
• Statistical Population Bounding
• Monte Carlo Methods
• Computational Statistics
• Biological Sciences Applications
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What is IIT?

• IIT brings together the data, information, and 
distributed knowledge of different scientific 
disciplines, organizational levels, and 
geographically separate teams.

• IIT makes advanced problem-solving capability 
and defensibility available to decision makers.

IIT is a combination of processes, 
methods, and tools for collecting, 
organizing, and analyzing diverse 

information from dynamic environments 
to support decision making under 

uncertainty.
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Goals of IIT

GOAL: Develop a “standard” framework of 
processes, methods, and tools useful for 
evolving R&D to support of decision 
making under uncertainty.

CURRENT PRACTICE: Data, modeling, 
and analysis has evolved in a stovepipe 
manner within disciplines. Integration of 
the science either occurs through some 
“test” event or in the mind of the decision 
maker.
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IIT Approach

Create a framework for integrating scientific 
knowledge, to accelerate R&D, that is: 
• flexible allowing all diverse and 

heterogeneous sources of information 
to be included

• mathematically rigorous and traceable
to ensure confidence in the predictions

• complete and able to support 
dependent objectives

• builds on the best of what is already 
being done
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Lesson Learned

Optimal decision-making requires diversity of information:

– Sources of information - theoretical models, test data, 
computer simulations, expertise and expert judgment (from 
scientists, field personnel, decision-makers…) 

– Content of the information - information about system 
structure and behavior, decision-maker constraints, options, 
and preferences…) 

– Multiple communities that are stakeholders in the decision 
process 

The Problem is not Modeling, 
it is Decision Making
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BUSINESS WEEK / July 10, 2000

GONE FISSION

DR. SPOCK MEETS
DR. STRANGELOVE

Nuclear 
Weapons 
Program

Partners in IIT Development

F-22 SPO/Seek Eagle

AMCOM/RDEC
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Los Alamos Nuclear Weapons
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How We Carry Out Our Mission

Before:  Design-Test-Produce

Now: Surveil-Assess-Respond
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IIT Experience

• Building confidence in “system” performance, reliability, 
sustainability, dependability, etc

• Resource allocation (experimental design) and analysis for 
sub- and full “system” tests

• Data/information requirements for “system” assessment
• Value of all information sources including

• Data on similar systems
• Computer/simulation models
• Experience/expertise, i.e.,  human judgment 
• Test data

Continuous and Comprehensive 
Evaluation of the “System”
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IIT Components
• Decision Domain

• Problem definition
• Setting decision context 

• System Representation
• Structuring and mathematically representing         

the problem
• Identify data/information flow and analysis strategies

• System Quantification
• Populating system representation with 

data/information
• Estimation/prediction through statistical information 

integration, including uncertainty quantification
• System Optimization

• “What if” analyses
• Uncertainty quantification
• Sensitivity analysis

• Technology Transfer
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Information Integration Framework

Knowledge
Models

Influence
Diagrams

Statistical
Models

Problem
Definition

Decision
Making

Decision Context and Objectives

Communities of Practice

Data Sources

Iterative Problem Refinement
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Our View of Your Acquisition Process

High Level Requirements

Requirements

Test and EvaluateDesign/Develop

(Build/Buy/Contract)

Model and Simulation Driven
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Problem and System Structuring

Deborah Leishman, Ph.D.
leishman@lanl.gov
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Overview

• Knowledge Capture and Representation

• A Template for Structured Interviewing

• An Example



18LA-UR-02-1865

Knowledge Capture and Representation

• Knowledge Capture and Representation are done as 
an iterative refinement process

• Knowledge Capture occurs as a structured 
interviewing process driven by templates represented 
as conceptual graphs

• Conceptual Graphs are a Knowledge Representation 
technique developed by John Sowa 
(www.uah.edu/~delugach/CG/)

• Notes taken during the structured interviews are 
refined into a conceptual graph representation in 
stages (portions of the templates done in different 
interviews)

• The Knowledge Models are transformed into Proto 
Influence Diagrams and finally into Statistical Models
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Knowledge Capture and Representation

• First Frame the Problem
– Problem Definition
– Decision context

• The CG Knowledge Model template is then 
used to develop the  following descriptions:
– Decision Goals and Evaluation Criteria
– System Structure
– System Functions
– Test Processes and Failure Modes
– Data Sources
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The Conceptual Graphs KM Template
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An Example Reliability Model

Missile Defense Agency
Critical Measurements Program

• GOAL: Fly a high-fidelity, threat-representative 
missile system for Theater Missile Defense data 
collection and interoperability exercise

• ISSUES 
- Multiple partners and contractors 
- High reliability demanded 
- Full system testing not an option
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Problem Definition and Decision Context

PRIMARY OBJECTIVES
Threat Representativeness
Data Collection
SECONDARY OBJECTIVES
Meet requirements of user
community

DECISION CONTEXT
1. Highest risk areas based on reliability
estimate
2. Trade-offs between data collection and threat
representativeness
3. Prioritization of User Community
requirements

 

SCENARIO:
time and altitude dependent series of events

MISSILE

 

6  
0 6 5 0 

THREAT DEFINITION
Generated  w/

 intelligence information

REQUIREMENTS
Primary: represent threat/collect

data
Secondary: Provide users with
opportunity to conduct auxiliary

experiments
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First Refinement of the KM Template
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A Further Refinement of the Goals 
and Evaluation Criteria

PAYLOAD DEPLOYMENT

PAYLOAD AND BOOSTER
SEPARATE IN THREAT

REPRESENTATIVE MANNER

PAYLOAD AND BOOSTER
SEPARATE IN NON THREAT
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The First Proto Influence Diagram
design data for key subsystems: AFT SKIRT AND ATTITUDE CONTROL

payload separation event

BOOSTED
FLIGHT:

ATTITUDE
CONTROL

subsystem: TVA subsystem: RCASAFT SKIRT

HEAT
SHIELDING

BOOSTED FLIGHT:
VEHICLE STABILITY

BOOSTED FLIGHT:
THERMAL PROTECTION FOR

SENSITIVE PARTS
ECU

ACTUATOR
MOTOR

ELECTRICAL
POWER

WIRING/
CABLES

RESERVOIR

HELIUM
TANK

DISTRIBUTION
MANIFOLD

ACTUATOR

CASTOR IVB
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SQUIBS

OIL TANK

AILERONS

BOLTS
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BREAKAGE

CFD
ANALYSIS

TORSION

FLUTTER

BREAKAGE TORSION FLUTTER

WIND TUNNEL
TESTS

FINITE
ELEMENT
ANALYSIS

LOAD
TESTING

FAILURE
TEST

BENCH
ELECTRONICS

TEST

SYSTEM
ACCEPTANCE

TESTING

LOAD
TESTING

FINITE
ELEMENT
ANALYSIS

FULL SYSTEM
VIBRATION TEST

ATTITUDE HOLD
TEST

DATA

DATA

DATA

DATA

DATA

- All parts of the TVA subsystem must 
work for the subsystem to perform 
successfully

- The TVA subsystem can counter- act 
poor performance by the Fins or 
RCAS subsystem to a certain extent 
(i.e. within a certain threshold) 
ensuring proper attitude control

- All parts of the RCAS must work for 
the subsystem to perform successfully
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Summary

• Knowledge Capture and Representation 
happen as an Iterative Refinement Process

• Templates are used to drive a structured 
Interviewing process

• First Frame the problem
• Refine the Problem by linking Structure, 

Functions, Test Processes, and Data to 
Goals
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Sources of Uncertainty

Alyson Wilson, Ph.D.
agw@lanl.gov



28LA-UR-02-1865

Qualitative and Quantitative 
Representations

In the previous section, we discussed two forms of 
representation: the conceptual graph and the “proto-
influence diagram.” The proto-influence diagram 
actually draws from a collection of statistical 
representation techniques that include both tree-based 
and graph-based models.
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Trees and Graphs

The basic tree model is the decision tree. At each 
node of a decision tree there is a question or event; 
arcs coming from each node correspond to the 
answers to the question or occurrence of an event. A 
special case of a decision tree is an event tree.

Another useful tree model is the fault tree, which 
traces events, using AND and OR gates, that lead to a 
failure.

Also used are reliability graphs, which capture the 
physical interconnection of parts, and state-transition 
graphs, which generalize the decision tree to multiple 
states.
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Statistical Representations

There is important translation that takes place between 
the “proto-influence diagram” and the actual statistical 
calculations. The information from the knowledge 
modeling is transformed into a statistical representation. 

“In this way models can be adjusted and elaborated 
without needing to confront a client with numerical 

evaluations of uncertainty (e.g., probabilities) early in 
the analysis—a process about which many clients 

harbor great suspicion.”
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Graphs

When we talk about graphs, we are talking about the 
formal mathematical kinds of graphs that contain 
nodes and arcs. The two kinds of graphs that are 
most commonly used are:

• Reliability block diagrams, where the nodes capture 
components and functions and their dependencies 
(series, parallel, k-of-n)

• Graphical models, where the nodes are random 
variables and the arcs capture conditional 
dependencies. We are specifically working with chain 
graphs, which are acyclic (no directed cycles) graphs 
with directed or undirected edges.
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• Expertise
• Expert judgment 
• Historical test data 
• Data / information on similar or relevant systems
• Design specifications
• Computer simulation model outputs
• Physical model / code outputs
• Test Data

Data, Information, and Knowledge

Our goal is to represent the entire state of knowledge about a given 
problem at a given time.
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Expert Judgment as Data

Expert judgment shares traits with data from 
tests, experiments, or physical observations.

• It is affected by the process of gathering it
• It has uncertainty, which can be characterized and 

subsequently analyzed. 
• It can be conditioned on various factors, such as 

• the phrasing of the question, 
• the information the experts considered, 
• the experts’ methods of solving the problem, 

and
• the experts’ assumptions. 

• It can be combined with other information/data.
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Quantifying Expert Judgment

Distributions can be formulated by:
• Having the expert draw a distribution
• Using elicited moments, parameters, or 

quantiles
• Using elicited membership functions

While we are focusing on using expert 
judgment to formulate probability distributions, 
we also have done work using non-probabilistic 
uncertainty characterizations like Dempster-
Shafer theory and fuzzy logic.
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Moments—while an expert might be able to estimate 
a mean, it is extremely rare that he/she would be 
able to estimate a standard deviation or variance.  
As such, studies do not recommend this estimation.

Formulating Distributions

.1 .5 1.0 1.5

Distribution is normal 
with a mean of 0.7

and a standard deviation 
10% of mean
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Parameters—rarely can parameters be directly 
estimated by experts. One such possible case is 
with distributions whose parameters have 
interpretations (e.g., 1st beta parameter can be 
number of successes, and the 2nd parameter can 
be number of failures).  

.1 .5 1.0

Beta:
1st= 98 successes
in 100 trials
2nd= 2 failures

Formulating Distributions
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Quantiles—most common.  Experts do well in 
estimating the median as the most likely value or as 
their best estimate. Studies indicate if an expert 
provides a mean, it often is a median. Ranges of 
values (best/worst or max/min) are good for 
estimating uncertainty; however take into account 
the experts to underestimation of uncertainty bias.

0 < p <1
pmax=0.99, pmin=0.85

.1 .5 1.0

Formulating Distributions
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Which method do you use?

• What kind of expert judgment did you 
elicit?

• What method is the most tractable?
• What matches the features that your 

expert considers important?
• Which one can you simulate from?
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Computer Model Evaluation

One of the active research areas in our group is the 
characterization of uncertainties associated with 
predictions of physically-based computer models.

The statistical research areas include:
• Design of experiments
• Sensitivity/importance analysis
• Feature extraction
• Statistical emulators
• Assessment of model adequacy
• Model calibration
• Extrapolation and prediction
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Statistical Framework

( ) ( )test test y testy x M(x ; ) b x e= θ + +

( ) ( )pred pred z predz x M(x ; ) b x= θ +

Data y collected under scenario xtest are 
related to model M with parameters θ by

Predictions of z under scenario xpred will be 
estimated using the model M by
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The Forward Problem

Model
Derived

distributions 
for model outputs

Prior
information on
model inputs

Data for
some
inputs

Distributions 
for model inputs

Prediction
error
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Using Data on Output Variables

Model
Derived

distributions 
for model outputs

Prior
information on
model inputs

Data for
some
inputs Prediction

error

Model assessment

Model calibration

Data for
some

outputs

Distributions 
for model inputs
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Statistical Context for CME

Data

Data

Theory
(physics)

Inputs
Model(s)

Outputs

Prediction
Uncertainty

Information
Integration
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Historical and Similar System Data

Historical and similar system data are becoming 
recognized as important sources of information for 
system evaluation. In a T&E context, think about the 
push to use developmental test data to inform the 
operational evaluation. 

The current state of the art is statistical modeling, 
examples of which are given in the next section.
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Bayesian Hierarchical Modeling

C. Shane Reese
reese@statmail.byu.edu
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Outline

• (brief) Literature review
• What is a hierarchical model
• Conceptual example
• Real data example
• Other applications
• Conclusions
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Literature Review

• Draper et al. (1992) is the best overview of HM
• Robbins (1955) is the first demonstration of HM, he 

calls it empirical Bayes
• Efron and Morris (1975) also refer to HM as empirical 

Bayes
• Lindley and Smith (1972) and Smith (1973) present a 

general hierarchical linear model
• (1998 – present) a flood of papers on hierarchical 

models
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What is a HM?
• Consists of three parts

1.  Observational model: distribution of the data

(independently)

2.  Structural model: distribution of unobservables (parameters)

(independently)

3.  Hyperparameter model: distribution of parameters from (2)

• How does this relate to regular Bayesian methods?

~ (hα α) 

( ) ~ ( 1,...,y f y i ni i i i iθ θ ),        =

( ) ~ ( 1,...,g i ni iθ α θ α),           =
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What is a HM?
• Standard Bayesian Methods

• Now (under HM):

• Difficulty:
1.  Under standard Bayesian methods, calculating

2.  Now (under HM), calculating

(y ) ( )
( | y)

(y
f g

p
f g d

θ

θ θ
θ =  

θ) (θ) θ∫

( ) (y ( )m y f g d
θ

= θ) θ θ∫

1 1

( ) ( ) ( ) ( )
n

n
m y f y g h di i i

i
θ θ

= θ θ α α θ
=

… ∏∫ ∫

1

1

1

( ( )
( y)

( ( (
n

n f y g hi i iip
n f y g h di i iiθ θ

θ ) (θ α) α=θ =
θ ) θ α) α) θ=

∏
∏∫ ∫L
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Computation (not covered in this course)

• If m(y) is known (that is if the posterior 
distribution is a known form), then calculation 
is EASY (calculators).

• If m(y) is not known, then we have to use 
fancy computational techniques called 
Markov Chain Monte Carlo (MCMC).
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Conceptual Example

Suppose we have data on k components which are believed to have
similar (but not the same!!!) reliability.

• Observational model:

for i = 1,. . .,k.

• Structural model

that is,                        where                and

( ) (1 )g i ii
1 ζ− 1Γ(τ + ζ) τ−θ α = θ − θ

Γ(τ)Γ(ζ)

~ (Betaiθ τ, ζ) (α = τ,ζ)

( ) (1 )i i i
y
i

n n yif yi i iyi

  −θ = θ − θ 
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Conceptual Example

• Hyperparameter model

that is,   and    have gamma distributions with 
parameters
(   ,    ), and (   ,    ), respectively.

{ }1
( , ) exp x

( )

a
a

h b
b a

−1τ

τ
τ

τ τ

τ ζ = τ −τ/
Γ

{ }1
exp

( )

a
a

b
b a

−1ζ

ζ
ζ

ζζ

ζ −ζ/
Γ

τ ζ

aζ bζaτ bτ
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Real Data Example

An anti-aircraft missile has several components (names 
omitted to protect the innocent).

• number of successful tests at a component is 
binomial

• each component has its own reliability
• Yi is number of successful tests out of ni tests
• πi is the probability of success at each component 

(reliability)
• Yi has a Binomial distribution with parameters ni and 

πi
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Real Data Example

Data

• Over 1400 full system tests (at highest level)
• 45 tests at SOME of the components
• 126 tests at one subsystem
• some components/subsystems have 0 tests (no data)
• Picture
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Real Data Example
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Real Data Example



57LA-UR-02-1865

Real Data Example
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Real Data Example



59LA-UR-02-1865

Other Applications

• Bayesian Hierarchical Models are useful for combining 
diverse information

• Computer Models (biases)
• Physical Experiments (correct, but expensive)
• Historical Data (“prior” information)
• Expert Opinion (“prior” information)
• Reese, Wilson, Martz, Hamada, Ryan (2002) treats case 

of combining Computer Experiments with Physical 
Experiments and Expert Opinion using Bayesian 
Hierarchical Models

• Data sources are different but intended to answer same 
problem
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Background

• Computer/Physical experimental data
• Same (or a subset of the same) factors, but 

possibly different factor values
• Different responses – transfer function
• Expert opinion
• Simultaneously analyze the combined data using 

recursive Bayesian hierarchical model (RBHM)
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Motivation

• Why bother? What do we gain?
1.  More precisely estimated model
2.  Validation of computer experiments
3.  Better predictions

• Cost savings (design?)
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Motivation

• The RBHM recognizes important differences between 
different data sources (expert opinion, computer 
model, and physical data).
1.  Both location and scale biases in computer 

models (see Uncertainty and Reliability), allowed 
to be different for each run of the computer model.

2.  Both location and scale biases in individual
experts, allowed to be different for each expert 
opinion (same or different experts).
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Model

• Stage 1
– Define initial priors on all unknown parameters, 

including the biases.
– Update these priors using the expert opinions to 

form the posterior distributions (using Bayes 
theorem).
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Model

• Stage 2
– Use the posteriors from Stage 1 as the priors at 

Stage 2.
– Update these priors using the computer model 

output to form new posterior distributions (again 
by Bayes theorem).
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Model

• Stage 3
– Use the posteriors from Stage 2 as the priors at 

Stage 3.
– Update these priors using the physical 

experimental data to form new posterior 
distributions (Bayes theorem).

– This yields the fully updated or final posterior 
distributions of interest (e.g., regression 
coefficients, or parameters of a reliability 
distribution).
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Discussion

• We can assess the effect of each data source by 
comparing the posteriors as they evolve from 
Stages 1 to 3 (this will be illustrated in the 
example).

• RBHM can be applied in a linear model 
framework as well as a reliability context.  We will 
illustrate it in a linear model framework.
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Model Details

• Physical experimental data
– where the physical data       are

normally distributed with mean        X is a model
matrix of factors values, and     is a vector of 
unknown regression parameters.  The notation

indicates that each physical observation is
independent of the others and has variance     .  

2~ ( , ),pY N X Iβ σ pY

,X β
β

2Iσ
2σ
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Model Details

• Goal
– The primary goal is to estimate    and      and 

make inferences about them; namely, which 
components of    are non-zero or “significant”

– More appropriately, we want to know which 
covariates affect the performance metric.

2σ

β

β



69LA-UR-02-1865

Model Details

• Computer experimental data
– Comes from complex computer models of physical 

phenomena, e.g., finite element models.
– where     is a vector of model 

run specific location biases and      is a matrix of 
scale biases (again computer model run specific)

– Usually

2~ ( , ),c c cY N X β + δ σ ∑ cδ

c∑

1

2

1 0 0

0 1 0

0

0 1

/

/

/

c

c
c

c

k

k

k
c

∑

 
 
 
 
 
 
 

=

L
L

M O L
L L
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Model Details

• Expert opinion data (expert judgment)
– where      is a vector of possible 

location biases and       is a matrix of possible scale biases.
– Usually

. 

1

2

1 0 0

0 1 0

0

0 1

/

/

/
E

o

o
o

o

k

k

k

∑

 
 
 
 
 
  
 

=

L
L

M O L
L L

2~ ( , ),o o oY N X β + δ σ ∑ oδ

o∑
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Biases

• How do these biases arise?
– Location bias: an expert’s average value is often 

either higher or lower than the true mean.
– Scale bias: when an expert provides, say, a 0.90 

quantile on the true response, this elicited value is 
often in reality a 0.60 or 0.70 quantile (over-
valuation of information)
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Elicited Space

• How are these expert opinions elicited?
– An expected response, yo.
– A quantile qξ for a prespecified probability ξ (e.g., 

ξ = 0.9, and thus the expert believes that 90% of 
the responses will be below qξ).

– The “worth” of the expert opinion, mo.



73LA-UR-02-1865

Worth?

• What is meant by the worth of expert opinion?
– The corresponding number of physical experimental 

observations equivalent to the opinion.
– May be fractional (e.g., may be less than 1)
– Uncertainty about mo is expressed through a prior 

distribution, which is then marginalized (integrated out) when 
applying the RBHM.
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Computation

• MCMC methods to simualte observations from the 
posterior distribution.

• Our method uses Gibbs sampling which involves 
simulation from  complete (or full) conditional 
distributions.
– Distribution of each parameter conditional on all other 

parameters and the data
– When the complete conditional can’t be found in closed 

form, we simulate from the complete conditional distribution 
using the Metropolis-Hastings algorithm.
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Prior Distributions

• Analogous structure for computer model
• Prior distributions

( ) ( )
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~ (0.5 ,2.0 )
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2
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δ θ ξ
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Prior Distributions

• Hyperprior
– For     :

– For 

oδ

~ ( , )

~ ( , ),
o o

o o

o

o

G a b

G a b

φ φ

ωω
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Example

• Fluidized Beds used to coat food products
• Air is used to “float” the product through for even 

coating
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Example
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Example

• Three thermodynamic computer models (with 
increasing fidelity) were developed.

• Response: Steady-state thermodynamic operating 
point (Y)

• Input variables:
– Pump air temperature (A)
– Fluid velocity (V)
– Coating solution flow rate (R)
– Atomization air pressure (P)
– Room Humidity (H)
– Room temperature (T)
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• 28 runs of each computer model (at different 
combinations of input variables) for a total of 28 x 3 
computer model runs.

• 28 runs of the physical machine at each of the 
combinations of input variables.

• There are differences between “data” sources

Example
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• Model

• Goal:  Estimate and .1
2
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Example
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Example
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Discussion

• More precise estimation of parameters
• Predictive distribution of biases provides validation of 

computer models
• Wide applicability

– Example is for performance metrics in linear models framework
– Reliability distributions are minor modification

• Complicated models can be handled
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Optimal Allocation of Resources

C. Shane Reese
reese@statmail.byu.edu
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Design

• Want the most bang for your buck (literally)
• Total cost (TC) of computer and physical experiments:

– TC = FCc x I{nc = 1} + ncCc + FCp x I{np = 1} + npCp, where the 
indicator function I{•} = 1 if it argument is true and 0 otherwise

where FCc is the “start-up” cost for a computer 
experiment, I{nc = 1} is the indicator that some
computer experiments will be run, nc is the number of 
computer experiment runs, Cc is the cost of each 
computer run, where FCp is the “start-up” cost for a 
physical experiment, I{np = 1} is the indicator that some 
physical experiments will be run, np is the number of 
physical experiment runs, Cp is the cost of each 
physical experiment run.
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• Let U(Dc, Dp) be a measure of the amount of 
information in a combined design with 
computational experiment Dc and physical 
experiment Dp.

• The experimental design problem then 
becomes:

1. Find the combined design (Dc, Dp) that 
maximizes U(Dc, Dp) 

2. subject to the constraint TC B (where B 
is the budget).

• Could be time as well as cost!

Optimal Design

≤
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Optimal Design

• Choices that must be made:
1. Must specify (possibly with uncertainty) 

FCc, Cc, FCp, Cp
2. Must choose a form for U(Dc, Dp)
3. Bayesian: maximize the expected utility

where θ is the unknown parameters, y is the 
data, and X is the design matrix.

4. Popular choices:
• Shannon information
• Determinant of (X’X)-1 (D-optimality)

[ ( )] ( )E U X U x d dyθ= ∫ ∫
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Choices of Utility

• We choose: gain in Shannon information
• Mathematically:

• Hard to calculate
• Even harder to maximize

( ) log[ ( | , )] ( | , ) ( )U x y X f y X d dyπ θ θ π θ θ= ∫ ∫
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Algorithm

generate 
potentially 
high EIG 
candidate 
designs

estimate 
the EIG of 

the 
candidate 
designs

Stage 1 Stage 2

Two-stage Iterative Bayesian Experimental Design Solver
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How are we going to maximize?

• Genetic algorithm
1. Choose an initial set of designs
2. Allow crossovers
3. Allow mutations

• Multiple generations
• We never get “total” optimality, but we get 

VERY close
• Stochastic optimization
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Conclusions

• Uncertainty is attached to every problem

• Inclusion of expert judgment

• Good allocation of costs

• Considers the importance/value of each 
information source
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Decision Analysis

Alyson Wilson, Ph.D.
agw@lanl.gov
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1. A set of available actions or 
decisions; one action must be 
selected

2. Uncertain states of nature that 
impact what the consequences are 
for each decision

3. For each action/state pair, a utility

What are the parts of a 
decision analysis?



95LA-UR-02-1865

Example

You get to choose which weapon you want to take 
into a room full of bad guys. If you have more bullets 
than bad guys, and the weapon works, you win. 
Otherwise, you lose.

Two choices (actions):

a1 = 95% reliable weapon with 8 bullets
a2 = 60% reliable weapon with 13 bullets

There are somewhere between 0 and 19 bad guys 
(states of nature). Each count has a 5% chance.
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Example

Decision analysis says to choose the action that has the 
highest expected utility. Let W denote the utility of 
winning and L denote the utility of losing.

E[U(a1)] = 0.05W + 0.4(0.95W + 0.05L) + 0.55L
= 0.43W + 0.57L

E[U(a2)] = 0.05W + 0.65(0.6W + 0.4L) + 0.3L
= 0.44W + 0.56L

As long as W > L (you get more for winning than losing), 
the expected utility of a2 is larger, so a2 is the correct 
decision.
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Value of Information

Suppose that you could pay to find out for sure 
whether there are ten or fewer bad guys in the room 
or more than ten bad guys in the room. How much is 
that worth to you?

Calculate the expected utility for each case:

10≤ E[U(a1)] = 0.78W + 0.22L
E[U(a2)] = 0.64W + 0.36L

Choose a1

10> E[U(a1)] = L
E[U(a2)] = 0.2W + 0.8L

Choose a2

0.55(0.78W+0.22L) + 0.45(0.2W + 0.8L) - 0.44W + 0.56L = 
0.079(W – L) 
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• Very nice introduction to decision making can be found in Dennis
Lindley’s Making Decisions, 2nd Edition. (“The book is addressed 
to business executives, soldiers, politicians, as well as scientists; 
to anyone who is interested in decision-making and is prepared to 
take the trouble to follow a reasoned argument.”)

• Cost-free information is always expected to be of value.

• Notice that some of our calculations depend on the values of the
utilities we specify. Actually defining and quantifying utility requires 
elicitation and hard work. 

• The statistical portion of IIT quantifies the probability distributions 
associated with the states of nature; the knowledge modeling 
portion of IIT defines the actions, states of nature, and utilities.

Notes
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Reuse

Deborah Leishman, Ph.D.
leishman@lanl.gov
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Reuse

• Knowledge Reuse
• Software Reuse
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Knowledge Reuse

• Utilize a Knowledge Management tool such as a 
Lotus Notes Teamroom

• Structure the Teamroom using the CG template’s 
Key Concepts
– Events, Functions, Subsystems, Parts, Test 

Processes, Data Sources
• Provides access to more detailed information about 

the key concepts
• Provides distributed access and security  
• Provides a common language for distributed groups 

of developers 
• Provides a common virtual place for teams to meet
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First Refinement of the KM Template
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Software Reuse

• Why it hasn’t worked for 30 years:
– Culture – pretty important but we know what to do
– Tools/Repositories – not really the problem either
– Technical – Major problem

• C libraries and such work a bit
• OO Wrong granularity - its too small
• Frameworks are too complex
• Medium sized functional/services based components are 

just right – we now have what we need

– The really hard problem will be doing Domain 
Analysis to define the right sets of cohesive 
functions/services as components for an industry 
to evolve

– c/v (commonality/variability) is where its at
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Reuse

For further information: leishman@lanl.gov


